For the use of a Registered Medical Practitioner, or a Hospital, or a Laboratory only

DAPAGLIFLOZIN 10 MG AND SITAGLIPTIN PHOSPHATE 100 MG TABLETS

DAPAGLIPLEX 10/100

GENERIC NAME

Dapagliflozin 10 mg and Sitagliptin Phosphate 100 mg Tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Dapagliflozin 10 mg and Sitagliptin Phosphate 100 mg Tablets Each film coated tablet contains

Dapagliflozin Propanediol USP

Dapaglinozin Frioparieoro osi eq. to Dapaglifozin 1 Sitagliptin Phosphate Monohydrate IP 128 eq. to Sitagliptin 1t Colours: Ferric Oxide Yellow USP-NF & Titanium Dioxide IP

3. DOSAGE FUNDANCE
Oral dosage form (Tablets)
Dapaglification 10 mg and Sitagliptin Phosphate 100 mg
4. CLINICAL PARTICULARS

4. CLINICAL PARTITUDENCE
4.1 Therapeutic indication
It is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

It is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

ended dose of Fixed dose combination of Dapagliflozin and Sitagliptin Phosphate is 1 tablet orally once daily with or without food or as prescribed by the doctor. Swallow whole

tablet with a glass of water, do not chew, break, or crush it.

Assess renal function prior to initiation of Dapagliflozin and Sitagliptin Phosphate Tablet and periodically thereafter.

For patients with an estimated glomerular filtration rate [eGFR] greater than or equal to 45 mL/min/1.73 m² to less than 90 mL/min/1.73 m², no dosage adjustment for Dapagliflozin and Sitagliptin Phosphate is required.

Dosage adjustment for Dapagliflozin and Sitagliptin Phosphate Tablet is required for patients with moderate renal impairment (eGFR greater than or equal to 30 mL/min/1.73 m² to less than 45 mL/min/1.73 m² to less th tablet with a glass of water, do not chew, break, or crush it.

4.3 Contraindications

4.3 Contraindications.
History of a hypersensitivity reaction to Dapagliflozin and Sitagliptin, such as anaphylaxis or angioedema.
Severe renal impairment, end-stage renal disease (ESRD), or patients on dialysis.
4.4 Special warnings and precautions for use

<u>Dapagliflozin</u> Ketoacidosis in Patients with Diabetes Mellitus

Reports of ketoacidosis, a serious life-threatening condition requiring urgent hospitalization have been identified in patients with type 1 and type 2 diabetes mellitus receiving sodium-glucose cotransporter 2 (SGLT2) inhibitors, including Dapagliflozin. In placebo-controlled trials of patients with type 1 diabetes mellitus, the risk of ketoacidosis was increased in patients who received SGLT2 inhibitors compared to patients who received placebo. Fatal cases of ketoacidosis have been reported in patients taking Dapagliflozin. Dapagliflozin is not indicated for the treatment of patients with type 1 diabetes mellitus.

for the treatment of patients with type 1 diabetes mellitus.

Patients treated with Dapagillifozin who present with signs and symptoms consistent with severe metabolic acidosis should be assessed for ketoacidosis regardless of presenting blood glucose levels as ketoacidosis associated with Dapagillifozin may be present even if blood glucose levels are less than 250 mg/dL. If ketoacidosis is suspected, Dapagilliozin should be discontinued, the patients should be evaluated, and prompt treatment should be instituted. Treatment of ketoacidosis may require insulin, fluid, and carbohydrate replacement. In many of the post-marketing reports, and particularly in patients with type 1 diabetes, he presence of bacadidosis was not immediately recognized, and the institution of treatment was delayed because the presenting blood glucose levels were below those typically expected for diabetic ketoacidosis (often less than 250 mg/dL). Signs and symptoms at presentation were consistent with dehydration and severe metabolic acidosis and included nausea, vomiting, abdominal pain, generalized malates, and shortness of breath. In some but not all cases, factors precisioning to ketoacidosis, such as insulin dose reduction, acute febrile illness, reduced caloric intake, surgery, pancreatic surgery), and alcohol abuse were identified.

Before initiating Dapaadilficion, consider factors in the natient history that may predispose to ketoacidosis including pancreatic insulin deficiency from any cause caloris rectistion and

Institute of particular and the automorphisms of the auto

attention immediately if signs and symptoms occur Volume Depletion Volume Depletion

Dapagliflozin can cause intravascular volume depletion which may sometimes manifest as symptomatic hypotension or acute transient changes in creatinine. There have been postmarketing reports of acute kidney injury, some requiring hospitalization and dialysis, in patients with type 2 diabetes mellitus receiving SGLT2 inhibitors, including Dapagliflozin. Patients
with impaired renal function (eGFR less than 60 mL/min/1.73 m²), elderly patients, or patients on loop diuretics may be at increased risk for volume depletion or hypotension. Before
initiating Dapagliflozin in patients with one or more of these characteristics, assess volume status and renal function. Monitor for signs and symptoms of hypotension, and renal function
after initiating therapy.

Urosepsis and Pyelonephritis

Sergius uriganty tract infections including urosensis and pyelonephritis requiring hospitalization have been reported in patients receiving SGLT2 inhibitors, including Dapagliflozin.

Serious urinary tract infections including urosepsis and pyelonephritis requiring hospitalization have been reported in patients receiving SGLT2 inhibitors, including Dapagliflozin. Treatment with SGLT2 inhibitors increases the risk for urinary tract infections. Evaluate patients for signs and symptoms of urinary tract infections and treat promptly, if indicate

Treatment with SGLT2 inhibitors increases the risk for urinary tract infections. Evaluate patients for signs and symptoms of urinary tract infections and treat promptly, if indicated.

Hypoglycemia with Concomitant Use with Insulin and Insulin Secretagogues

Insulin and insulin secretagogues are known to cause hypoglycemia. Dapagliflozin may increase the risk of hypoglycemia when combined with insulin or an insulin secretagogue.
Therefore, a lower dose of insulin or insulin secretagogue may be required to minimize the risk of hypoglycemia when these agents are used in combination with Dapagliflozin.
Necrotizing Fasciitis of the Perineum (Fournier's Gangrene)

Reports of necrotizing fasciitis of the perineum (Fournier's Gangrene), a rare but serious and life-threatening necrotizing infection requiring urgent surgical intervention, have been identified in post-marketing surveillance in patients with diabetes mellitus receiving SGLT2 inhibitors, including Dapagliflozin. Cases have been reported in both females and males.
Serious outcomes have included hospitalization, multiple surgeries and death.
Patients treated with Dapagliflozin presenting with pain or tenderness, erythema, or swelling in the genital or perineal area, along with fever or malaise, should be assessed for necrotizing fasciitis. If suspected, start treatment immediately with broad-spectrum antibiotics and, if necessary, surgical debridement. Discontinue Dapagliflozin, closely monitor blood glucose levels and provide appropriate alternative therapy for quevice control.

levels, and provide appropriate alternative therapy for glycemic control. Genital Mycotic Infections

Dapadifflozin increases the risk of genital mycotic infections. Patients with a history of genital mycotic infections were more likely to develop genital mycotic infections. Monitor and treat

Particeaturs
There have been post marketing reports of acute pancreatitis, including fatal and non-fatal haemorrhagic or necrotizing pancreatitis, in patients taking Sitagliptin. After initiation of Sitagliptin, patients should be observed carefully for signs and symptoms of pancreatitis. If pancreatitis is suspected, Sitagliptin should promptly be discontinued, and appropriate management should be initiated. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using Sitagliptin.

Heart Failure An association between dipentidyl pentidase-4 (DPP-4) inhibitor treatment and heart failure has been observed in cardiovascular outcomes trials for two other members of the DPP-4 inhibitor class

These trials evaluated patients with type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Consider the risks and benefits of Sitagliptin prior to initiating treatment in patients at risk for heart failure, such as those with a prior history of heart failure and a history of renal impairment and observe these patients for signs and symptoms of heart failure during therapy. Advise patients of the characteristic symptoms of heart failure and to immediately report such symptoms. If heart failure develops, evaluate and manage according to current standards of care and consider discontinuation of Sitagliptin.

There have been post marketing reports of worsening renal function, including acute renal failure, sometimes requiring dialysis. A subset of these reports involved patients with renal impairment, some of whom were prescribed inappropriate doses of sitagliptin. A return to baseline levels of renal impairment has been observed with supportive treatment and discontinuation of potentially causative agents. Consideration can be given to cautiously reinitiating Sitagliptin if another etiology is deemed likely to have precipitated the acute worsening Assessment of renal function is recommended prior to initiating Sitagliptin and periodically thereafter. A dosage adjustment is recommended in patients with moderate or severe renal

impairment and in patients with ESRD requiring hemodialysis or peritoneal dialysis.

Hypoglycemia with Concomitant Use with Insulin or Insulin Secretagogues

When Sitaglipin was used in combination with a sulfonylurea or with insulin, medications known to cause hypoglycemia, the incidence of hypoglycemia was increased over that of placebo used in combination with a sulfonylurea or with insulin. Therefore, a lower dose of sulfonylurea or insulin may be required to reduce the risk of hypoglycemia.

Hypersensitivity Reactions
There have been post marketing reports of serious hypersensitivity reactions in patients treated with Sitagliptin. These reactions include anaphylaxis, angioedema, and exfoliative skin conditions including Stevens-Johnson syndrome. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Onset of these reactions occurring after the first dose. If a hypersensitivity reaction is suspected, discontinue Stagliptin, assess for other potential causes for the event, and institute alternative treatment for diabetes. Angioedema has also been reported with other DPP-4 inhibitors. Use caution in a patient with a history of angioedema with another DPP-4 inhibitor because it is unknown whether such patients will be predisposed to angioedema with Sitagliptin.

There have been post marketing reports of severe and disabling arthralgia in patients taking DPP-4 inhibitors. The time to onset of symptoms following initiation of drug therapy varied from one day to years. Patients experienced a recurrence of symptoms when restarting the same drug or a different DPP-4 inhibitor. Consider DPP-4 inhibitors as a possible cause for severe joint pain and discontinue drug (fappropriate.

Bullous Pemphigoid

Post marketing cases of bullous pemphigoid requiring hospitalization have been reported with DPP-4 inhibitor use. In reported cases, patients typically recovered with topical or systemic immunosuppressive treatment and discontinuation of the DPP-4 inhibitor. Tell patients to report development of blisters or erosions while receiving Sitagliptin. If bullous pemphigoid is suspected, Sitagliptin should be discontinued and referral to a dermatologist should be considered for diagnosis and appropriate treatment. Macrovascular Outcomes There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with Sitagliptin or any other anti-diabetic drug

4.5 Drug Interactions

Dapagliflozin

Clinically Relevant Interactions with Dapagliflozin

Insulin or Insulin Secretagogues The risk of hypoglycemia may be increased when Dapagliflozin is used concomitantly with insulin or insulin secretagogues (e.g., sulfonylurea) Clinical Impact Intervention Concomitant use may require lower doses of insulin or the insulin secretagogue to reduce the risk of hypoglycemia Lithium Concomitant use of an SGLT2 inhibitor with lithium may decrease serum lithium concentrations Clinical Impact Intervention Monitor serum lithium concentration more frequently during Dapagliflozin initiation and dosage changes Positive Urine Glucose Test SGLT2 inhibitors increase urinary glucose excretion and will lead to positive urine glucose tests Monitoring glycemic control with urine glucose tests is not recommended in patients taking SGLT2 inhibitors. Use alternative Intervention Interference with 1,5-anhydroglucitol (1,5-AG) Assay Measurements of 1,5-AG are unreliable in assessing glycemic control in patients taking SGLT2 inhibitors Clinical Impact Monitoring glycemic control with 1,5-AG assay is not recommended. Use alternative methods to monitor glycemic control.

Sitagliptin
Insulin Secretagogues or Insulin
Coadministration of Sitagliptin with an insulin secretagogue (e.g., sulfonylurea) or insulin may require lower doses of the insulin secretagogue or insulin to reduce the risk of hypoglycemia.

Pregnancy Risk Summary

Based on animal data showing adverse renal effects, Dapagliflozin is not recommended during the second and third trimesters of pregnancy. Limited data with Dapagliflozin in pregnant women are not sufficient to determine drug-associated risk for major birth defects or miscarriage. There are risks to the mother and fetus associated with poorly controlled diabetes and untreated heart failure in pregnancy. uniterated real removements programmely. In an analysis of the state o

development corresponding to the late second and third trimesters of human pregnancy, at all doses tested; the lowest of which provided an exposure 15-times the 10 mg clinical dose. The estimated background risk of major birth defects is 6 to 10% in women with the pre-gestational diabetes with a 14bA t greater than 7% and has been reported to be as high as 20 to 25% in women with 1bA t greater than 10%. The estimated background risk of miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Clinical Considerations

Clinical Considerations

<u>Disease-associated maternal and/or embryofetal risk</u>

Poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, preeclampsia, spontaneous abortions, preterm delivery and delivery complications. Poorly controlled diabetes increases the fetal risk for major birth defects, stillbirth, and macrosomia related morbidity.

Data

Animal Data

Animal Data

Animal Data

Animal Data

Data

Animal Data

Animal Data

Data

Animal Data

Lactation

There is no information regarding the presence of dapagliflozin in human milk, the effects on the breastfed infant, or the effects on milk production. Dapagliflozin is present in the milk of Interests in thinking and in egal time in presented or dapagnition. In the many in the interests of in the dreasted many, in the energy of the presented or dapagnition in the many of the case of the potential for serious adverse reactions in breastfed infants, advise women that use of Dapagniforain is not reactions in breastfed infants, advise women that use of Dapagniforain is not recommended while breastfeeding.

Dapagliflozin was present in rat milk at a milk/plasma ratio of 0.49, indicating that dapagliflozin and its metabolites are transferred into milk at a concentration that is approximately 50% of that in maternal plasma. Juvenile rats directly exposed to dapagliflozin showed risk to the developing kidney (renal pelvic and tubular dilatations) during maturation. That in interina plasma. Suverine has unexp exposed to dapagninozari showed its to the developing while yie Pediatric Use

Safety and effectiveness of Dapagliflozin in pediatric patients under 18 years of age have not been established. Geriatric Use

Geriatric Use

No Dapagliflozin dosage change is recommended based on age. A total of 1424 (24%) of the 5936 Dapagliflozin-treated patients were 65 years and older and 207 (3.5%) patients were 75 years and older in a pool of 21 double-blind, controlled, clinical studies assessing the efficacy of Dapagliflozin in improving glycemic control in type 2 diabetes mellitus. After controlling for level of renal function (eGFR), efficacy was similar for patients under age 65 years and those 65 years and older. In patients ≥65 years of age, a higher proportion of patients treated with Dapagliflozin for glycemic control had adverser eractions of hypotension.

In both the DAPA-HF and DAPA-CKD studies, safety and efficacy were similar for patients age 65 years and younger and those older than 65. In the DAPA-HF study, 2714 (57%) out of 4744 patients with HFtEF were older than 65 years. In the DAPA-CKD study, 1818 (42%) out of 4304 patients with CKD were older than 65 years.

Renal Impairment
Dapagliflozin was evaluated in 4304 patients with chronic kidney disease (eGFR 25 to 75 mL/min/1.73 m²) in the DAPA-CKD study. Dapagliflozin was also evaluated in 1926 patients with an eGFR of 30 to 60 mL/min/1.73 m² in the DAPA-HF study. The safety profile of Dapagliflozin across eGFR subgroups in these studies was consistent with the known safety profile.
Dapagliflozin was evaluated in two glycemic control studies that included patients with type 2 diabetes mellitus with moderate renal impairment (an eGFR of 45 to less than 60 mL/min/1.73 m², and an eGFR of 30 to less th experienced bone fractures compared to none receiving placebo. Use of Dapagliflozin for glycemic control in patients without established CV disease or CV risk factors is not recommended when eGFR is less than 45 mL/min/1.73 m². Efficacy and safety studies with Dapagliflozin did not enroll patients with an eGFR less than 25 mL/min/1.73 m². Dapagliflozin is contraindicated in patients on dialysis.

No dose adjustment is recommended for patients with mild, moderate, or severe hepatic impairment. However, the benefit-risk for the use of dapagliflozin in patients with severe hepatic ent should be individually assessed since the safety and efficacy of dapagliflozin have not been specifically studied in this population

Nask Summary
The limited available data with Sitagliptin in pregnant women are not sufficient to inform a drug associated risk for major birth defects and miscarriage. There are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy. No adverse developmental effects were observed when sitagliptin was administered to pregnant rats and rabbits during organogenesis at oral doses up to 30-times and 20-times, respectively, the 100 mg clinical dose, based on AUC.
The estimated background risk of major birth defects is 6-10% in women with pre-gestational diabetes with a Hemoglobin A1c >10% and has been reported to be as high as 20-25% in women with a Hemoglobin A1c >10%. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Chinal Considerations

Clinical Considerations

<u>Disease-Associated Maternal and/or Embryo/Fetal Risk</u>

Poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, preeclampsia, spontaneous abortions, preterm delivery, and delivery complications. Poorly controlled diabetes increases the fetal risk for major birth defects, still birth, and macrosomia related morbidity.

Animal Data
In embryo-fetal development studies, sitagliptin administered to pregnant rats and rabbits during organogenesis (gestation day 6 to 20) did not adversely affect developmental outcomes at oral doses up to 250 mg/kg (30-times the 100 mg clinical dose) and 125 mg/kg (20-times the 100 mg clinical dose), respectively, based on AUC. Higher doses in rats associated with maternal toxicity increased the incidence of rib matformations in offspring at 1000 mg/kg, or approximately 100-times the clinical dose, based on AUC. Placental transfer of sitagliptin was

observed in pregnant rats and rabbits

Sitagliptin administered to female rats from gestation day 6 to lactation day 21 caused no functional or behavioral toxicity in offspring of rats at doses up to 1000 mg/kg therefore possibly present in human milk. The developmental and health benefits of breastfeding should be considered along with the mother's clinical need for Sitagliptin and any potential adverse effects on the breastfed infant from Sitagliptin or from the underlying maternal condition. There is no information regarding the presence of Sitagliptin in human milk, the effects on the breastfed infant, or the effects on milk production. Sitagliptin is present in rat milk and

Sitagliptin is secreted in the milk of lactating rats at a milk to plasma ratio of 4:1. **Pediatric Use**

Pediatric Use
The safety and effectiveness of Sitagliptin have not been established in pediatric patients.
Three 20-week double-blind, placebo-controlled studies each with 34-week extensions were conducted to evaluate the efficacy and safety of sitagliptin in 410 pediatric patients aged 10 to 17 years with inadequately controlled type 2 diabetes, with or without insulin therapy. (HbA1c 6.5-10% for patients not on insulin, HbA1c 7-10% for patients on insulin). At study entry, patients in studies 2 and 3 were naximally tolerated metformin therapy. The primary efficacy endopoint was the change from baseline in HbA1c after 20 weeks of therapy. The pre-specified primary efficacy analyses included data from study 1 and pooled data from studies 2 and 3, regardless of glycemic rescue or treatment discontinuation.

In both efficacy analyses, the effect of freatment with sitagliptin was not significantly different from placebo. In study 1, the mean baseline HbA1c was 7.5%, and 12% of patients were on insulin therapy. At week 20, the change from baseline in HbA1c in patients treated with Sitagliptin (N=95) was 0.06% compared to 0.23% in patients treated with placebo (N=95), a difference of -0.17% (95% CL: -0.62, 0.28). In studies 2 and 3, the mean baseline HbA1c was 8.0%, 15% of patients were on insulin and 72% were on metformin HCI doses of greater than 1,500 mg daily. At week 20, the change from baseline in HbA1c in patients treated with sitagliptin (N=107) was -0.23% compared to 0.09% in patients treated with placebo (N=113), a difference of -0.33% (95% CL: -0.70, 0.05).

Geriatric Use Of the total number of subjects (N=3884) in pre-approval clinical safety and efficacy studies of Sitagliptin, 725 patients were 65 years and over, while 61 patients were 75 years and over. Of the total number of subjects (N=3884) in pre-approval clinical safety and efficacy studies of Sitagliptin, 725 patients were 65 years and over, while 61 patients were 75 years and over. No overall differences in safety or effectiveness were observed between subjects 65 years and over and younger subjects. While this and other reported clinical experience have not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out. Because sitagliptin is substantially excreted by the kidney, and because aging can be associated with reduced renal function, renal function should be assessed more frequently in elderly patients. 4.7 Effects on ability to drive and use machines

Dapagliflozin
Dapagliflozin has no or negligible influence on the ability to drive and use machines. Patients should be alerted to the risk of hypoglycaemia when dapagliflozin is used in combination with a sulphonylurea or insulin.

Stagliptin has no or negligible influence on the ability to drive and use machines. However, when driving or using machines, it should be taken into account that dizziness and somnolence have been reported. In addition, patients should be alerted to the risk of hypoglycaemia when sitagliptin is used in combination with a sulphonylurea or with insulin. 4.8. Undiserable effects

Danagliflozin The following important adverse reactions are described below and elsewhere in the labeling:
 Ketoacidosis in Patients with Diabetes Mellitus

Volume Depletion

 Urosepsis and Pyelonephritis Hypoglycemia with Concomitant Use with Insulin and Insulin Secretagogues Necrotizing Fasciitis of the Perineum (Fournier's Gangrene)

Genital Mycotic Infections

• Genital Mycotic Intections

Cflinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. Dapagifflozin has been evaluated in clinical trials in patients with type 2 diabetes mellitus, in patients with heart failure, and in patients with chronic kidney disease. The overall safety profile of Dapagifflozin was consistent across the studied indications. Severe hypoglycemia and diabetic ketoacidosis (DKA) were observed only in patients with diabetes mellitus

Clinical Trials in Patients with Type 2 Diabetes Mellitus

Clinical Trials in Patients with Type 2 Diabetes Mellitus
Pool of 12 Placebo-Controlled Studies for Dapagliflozin 5 and 10 mg
The data in Table 1 is derived from 12 placebo-controlled studies ranging from 12 to 24 weeks. In 4 studies Dapagliflozin was used as add-on to background antidiabetic therapy or as combination therapy with Metformin Hydrochloride. These data reflect exposure of 2338 patients to Dapagliflozin with a mean exposure duration of 21 weeks. Patients received placebo (N=1393), Dapagliflozin 5 mg (N=1145), or Dapagliflozin 10 mg (N=1193) once daily. The mean age of the population was 55 years and 2% were older than 75 years of age. Fifty percent (50%) of the population were male; 81% were White, 14% were Asian, and 3% were Black or African American. At baseline, the population had Diabetes for an average of 6 years, had a mean hemoglobin A₂ (HbA₂) of 8.3%, and 21% had established microvascular complications of Diabetes. Baseline renal function was normal or mildly impaired in 92% of patients and moderately impaired in 8% of patients (mean eGFR 86 ml/min/1.73 m²).

Table 2 shows common adverse reactions associated with the use of Dapagliflozin. These adverse reactions were not present at baseline, occurred more commonly on Dapagliflozin than on placebo, and occurred in at least 2% of patients treated with either Dapagliflozin 5 mg or Dapagliflozin 10 mg.

Table 2: Adverse Reactions in Placebo-Controlled Studies Reported in ≥2% of Patients Treated with Dapagliflozin

Adverse Reaction	% of Patients Pool of 12 Placebo-Controlled Studies				
Ī					
-	Placebo N=1393	Dapagliflozin 5 mg N=1145	Dapagliflozin 10 mg N=1193		
Female genital mycotic infections	1.5	8.4	6.9		
Nasopharyngitis	6.2	6.6	6.3		
Urinary tract infections [†]	3.7	5.7	4.3		
Back pain	3.2	3.1	4.2		
Increased urination [‡]	1.7	2.9	3.8		
Male genital mycotic infections [§]	0.3	2.8	2.7		
Nausea	2.4	2.8	2.5		
Influenza	2.3	2.7	2.3		
Dyslipidemia	1.5	2.1	2.5		
Constipation	1.5	2.2	1.9		
Discomfort with urination	0.7	1.6	2.1		
Pain in extremity	1.4	2.0	1.7		

Genital mycotic infections include the following adverse reactions, listed in order of frequency reported for females: vulvovaginal mycotic infection, vaginal infection, vulvovaginal candidiasis, vulvovaginitis, genital infection, genital candidiasis, fungal genital infection, vulvitis, genitourinary tract infection, vulval abscess, and vaginitis bacterial. (N for females: Placebe-677, Dapagilifozin 5 mg-581, Dapagilifozin 10 mg-598).

Urinary tract infections include the following adverse reactions, listed in order of frequency reported: urinary tract infection, cystitis, Escherichia urinary tract infection, genitourinary tract infection includes the following adverse reactions, listed in order of frequency reported: pollakiuria, polyuria, and urine output increased.

Genital mycotic infections include the following adverse reactions, listed in order of frequency reported: pollakiuria, polyuria, and urine output increased.

Genital mycotic infections include the following adverse reactions, listed in order of frequency reported for males: balanitis, fungal genital infection, balanitis candida, genital candidiasis, genital infection male, penile infection, balanoposthitis infective, genital infection, posthitis. (N for males: Placebe-716, Dapagilifozin 5 mg-564, Dapagilifozin 10 mg-595).

Dapagliflozin 10 mg was also evaluated in a larger placebo-controlled studies for Dapagliflozin 10 mg
Dapagliflozin 10 mg was also evaluated in a larger placebo-controlled study pool in patients with type 2 diabetes mellitus. This pool combined 13 placebo-controlled studies, including 3 monotherapy studies, 9 add-ons to background antidiabetic therapy studies, and an initial combination with metformin study. Across these 13 studies, 2360 patients were treated once daily with Dapagliflozin 10 mg for a mean duration of exposure of 22 weeks. The mean age of the population were male; 84% were older than 75 years. Fifty-eight percent (58%) of the population were male; 84% were White, 9% were Asian, and 3% were Black or African American. At baseline, the population had diabetes for an average of 9 years, had a mean HbA1 to f 8.2%, and 30% had established microvascular disease. Baseline renal function was normal or mildly impaired in 88% of patients and moderately impaired in 11% of patients (mean eGFR Volume Depletion

Dapagliflozin causes an osmotic diuresis, which may lead to a reduction in intravascular volume. Adverse reactions related to volume depletion (including reports of dehydration, hypovolemia, orthostatic hypotension, or hypotension) in patients with type 2 diabetes mellitus for the 12-study and 13-study, short-term, placebo-controlled pools and for the DECLARE Table 3: Adverse Reactions Related to Volume Depletion in Clinical Studies in Patients with Type 2 Diabetes Mellitus with Dapagliflozin

Pool of 13 Placebo- Controlled Studies Pool of 12 Placebo- Controlled studies DECLARE Study Placebo | Dapagliflozin 5 mg | Dapagliflozin 10 mg Dapaqliflozin 10 mg Placebo Dapaqliflozin 10 mg Placebo Overall population N (%) N=1393 N=1145 N=2360 207 (2.4%) 213 5 (0.4%) 17 (0.7%) 27 (1.1%) (0.8%) (0.6%) (2.5%)Patient Subgroup n (% n=866 57 (6.6%) Patients on loop diuretics n=267 n=236 (1.5%) n=107 n=265 5 (1.9%) Patients with moderate renal impairmer with eGFR ≥30 and <60 mL/min/1.73m n=107 n=268 n=604 n=658 30 (4.6%) 35 (5.8%) (1.5%) (1.9%)(0.9%)(1.1%) Patients ≥65 years of age n=276 n=216 n=204 n=711 n=665 1=3950 n=3948 11 (1.7%) 121 (3.1%) 6 (0.8%) (1.5%) (0.4%) (0.5%) (3.0%)

Volume depletion includes reports of dehydration, hypovolemia, orthostatic hypotension, or hypotension Hypoglycemia
The frequency of uency of hypoglycemia by study in patients with type 2 diabetes mellitus is shown in Table 4. Hypoglycemia was more frequent when Dapagliflozin was added to sulfonylurea or insulin

Table 4: Incidence of Severe Hypoglycemia and Hypoglycemia with Glucose < 54 mg/dL'in Controlled Glycemic Control Clinical Studies in Patients with Type 2 Diabetes Mellitus

	Placebo/Active Control	Dapagliflozin 5 mg	Dapagliflozin 10 mg
Monotherapy (24 weeks)	N=75	N=64	N=70
Severe [n (%)]	0	0	0
Glucose <54 mg/dL[n (%)]	0	0	0
Add-on to Metformin (24 weeks)	N=137	N=137	N=135
Severe [n (%)]	0	0	0
Glucose <54 mg/dL[n (%)]	0	0	0
Add-on to Glimepiride (24 weeks)	N=146	N=145	N=151
Severe [n (%)]	0	0	0
Glucose <54 mg/dL[n (%)]	1 (0.7)	3 (2.1)	5 (3.3)
Add-on to Metformin and a Sulfonylurea (24 Weeks)	N=109	-	N=109
Severe [n (%)]	0	-	0
Glucose <54 mg/dL[n (%)]	3 (2.8)	-	7 (6.4)
Add-on to Pioglitazone (24 weeks)	N=139	N=141	N=140
Severe [n (%)]	0	0	0
Glucose <54 mg/dL [n (%)]	0	1 (0.7)	0
Add-on to DPP4 inhibitor (24 weeks)	N=226	-	N=225
Severe [n (%)]	0	-	1 (0.4)
Glucose <54 mg/dL[n (%)]	1 (0.4)	-	1 (0.4)
Add-on to Insulin with or without other OADs [‡] (24 weeks)	N=197	N=212	N=196
Severe [n (%)]	1 (0.5)	2 (0.9)	2 (1.0)
Glucose <54 mg/dL[n (%)]	43 (21.8)	55 (25.9)	45 (23.0)

*Severe episodes of hypoglycemia were defined as episodes of severe impairment in consciousness or behavior, requiring external (third party) assistance, and with prompt recovery after intervention regardless of glucose level.
† Episodes of hypoglycemia with glucose <54 mg/dL (3 mmol/L) were defined as reported episodes of hypoglycemia meeting the glucose criteria that did not also qualify as a severe episode.
‡ OAD = oral antidiabetic therapy.

In the DECLARE study, severe events of hypoglycemia were reported in 58 (0.7%) out of 8574 patients treated with Dapagliflozin and 83 (1.0%) out of 8569 patients treated with placebo

Genital Mycotic Infections
In the glycemic control trials, genital mycotic infections were more frequent with Dapagliflozin treatment. Genital mycotic infections were reported in 0.9% of patients on placebo, 5.7% on Dapagliflozin 5 mg, and 4.8% on Dapagliflozin 10 mg, in the 12-study placebo-controlled pool. Discontinuation from study due to genital infection occurred in 0% of placebo-treated patients and 0.2% of patients treated with Dapagliflozin 10 mg, infections were more frequently reported in females than in males. The most frequently reported genital mycotic infections were unlowaginal mycotic infections in females and balantitis in males. Patients with a history of genital mycotic infections were more likely to have a genital mycotic infection during the study than those with no prior history (10.0%, 23.1%, and 25.0% versus 0.8%, 5.9%, and 5.0% on placebo, Dapagliflozin 5 mg, and Dapagliflozin 10 mg, respectively). In the DECLARE study, serious genital mycotic infections were reported in 0.1% of patients treated with placebo. Genital mycotic infections stat caused study drug discontinuation were reported in 0.9% of patients treated with Dapagliflozin and <0.1% of patients treated with placebo.

Hypersensitivity reactions (e.g., angioedema, urticaria, hypersensitivity) were reported with Dapagliflozin treatment. In glycemic control studies, serious anaphylactic reactions and severe cutaneous adverse reactions and angioedema were reported in 0.2% of comparator-treated patients and 0.3% of Dapagliflozin-treated patients. If hypersensitivity reactions occur, discontinue use of Dapagliflozin; treat per standard of care and monitor until signs and symptoms resolve.

Ketoacidosis in Patients with Diabetes Mellitus
In the DECLARE study, events of diabetic ketoacidosis (DKA) were reported in 27 out of 8574 patients in the Dapagliflozin-treated group and 12 out of 8569 patients in the placebo group. The events were evenly distributed over the study period. Laboratory Tests

Increases in Serum Creatinine and Decreases in eGER

Initiation of SQLT2 inhibitors, including Dapagliflozin causes a small increase in serum creatinine and decrease in eGFR. These changes in serum creatinine and eGFR generally occur within two weeks of starting therapy and then stabilize regardless of baseline kidney function. Changes that do not fit this pattern should prompt further evaluation to exclude the possibility of acute kidney injury. In two studies that included patients with type 2 diabetes mellitus with moderate real impairment, the acute effect on eGFR reversed after treatment discontinuation, suggesting acute hemodynamic changes may play a role in the renal function changes observed with Dapagliflozin. In the pool of 13 placebo-controlled studies of glycemic control, increases from baseline in mean hematocrit values were observed in Dapaqliflozin-treated patients starting at Week 1 and continuing up to Week 16, when the maximum mean difference from baseline was observed. At Week 24, the mean changes from baseline in hematocrit were -0.33% in the placebo group and 2.30% in the Dapagliflozin 10 mg group. By Week 24, hematocrit values >55% were reported in 0.4% of placebo-treated patients and 1.3% of Dapagliflozin 10 mg-treated patients.

Increase in Low-Density Lipoprotein Cholesterol
In the pool of 13 placebo-controlled studies of glycemic control, changes from baseline in mean lipid values were reported in Dapagliflozin-treated patients compared to placebo-treated patients. Mean percent changes from baseline at Week 24 were 0.0% versus 2.5% for total cholesterol, and -1.0% versus 2.9% for LDL cholesterol in the placebo and Dapagliflozin 10 mg groups, respectively. In the DECLARE study, mean changes from baseline after 4 years were 0.4 mg/dL versus -4.1 mg/dL for total cholesterol, and -2.5 mg/dL versus -4.4 mg/dL for LDL cholesterol, in Dapagliflozin-treated and the placebo groups, respectively.

Decrease in Serum Ricarbonate In a study of concomitant therapy of Dapagliflozin 10 mg with exenatide extended-release (on a background of metformin), four patients (1.7%) on concomitant therapy had a serum bicarbonate value of less than or equal to 13 mEq/L compared to one each (0.4%) in the Dapagliflozin and exenatide-extended release treatment groups. DAPA-HF Heart Failure Study ew adverse reactions were identified in the DAPA-HF heart failure study.

DAPA-CKD Chronic Kidney Disease Study
No new adverse reactions were identified in the DAPA-CKD study in patients with chronic kidney disease

Post-marketing Experience
Additional adverse reactions have been identified during post approval use of Dapagliflozin in patients with diabetes mellitus. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Experience Acute Kidney Injury

Necrotizing Fasciitis of the Perineum (Fournier's Gangrene) Sitagliptin

Pancreatitis Heart Failure Acute Renal Failure

Hypoglycemia with Concomitant Use with Insulin or Insulin Secretagogues

Hypersensitivity Reactions evere and Disabling Arthralgia Bullous Pemphigoid

Urosepsis and Pyelonephritis

Clinical Trials Experience

Nasopharyngitis

Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In controlled clinical studies as both monotherapy and combination therapy with Metformin, Pioglitazone, or Rosiglitazone and Metformin, the overall incidence of adverse reactions, hypoglycemia, and discontinuation of therapy due to clinical adverse reactions with Sitagliptin were similar to placebo. In combination with Glimepinde, with or without Metformin, the overall incidence of clinical adverse reactions with Sitagliptin was higher than with placebo, in part related to a higher incidence of hypoglycemia; the incidence of discontinuation due to clinical adverse reactions was similar to placebo.

Two placebo-controlled monotherapy studies, one of 18- and one of 24-week duration, included patients treated with Sitagliptin 100 mg daily, and placebo. Five placebo-controlled add-on combination therapy studies were also conducted: one with Metformin; one with Ploglitazone; one with Metformin and Rosiglitazone; one with Glimepinde (with or without Metformin); and one with insulin (with or without Metformin). In these trials, patients with inadequate glycemic control on a stable dose of the background therapy were randomized to add-on therapy with Sitagliptin 100 mg daily or placebo. The adverse reactions, excluding hypoglycemia, reported regardless of investigator assessment of causality in ≥5% of patients treated with Sitagliptin 100 mg daily and more commonly than in patients treated with Placebo, are shown in Table 5 for the clinical trials of at least 18 weeks duration. Incidences of hypoglycemia are shown in Table 5. Studies of Sitagliptin Monotherapy or Add-on Combination Therapy with Ploglitazone, Metformin + Rosiglitazone, or Glimepiride +/-Metformin: Adverse Reactions (Excluding Hypoglycemia) Reported in ≥ 5% of Patie

Number of Patients (%) Sitagliptin 100 mg N = 443 Monotherapy (18 or 24 weeks)

Combination with Pioglitazone (24 weeks)	Sitagliptin 100 mg + Pioglitazone	Placebo + Pioglitazone	
	N = 175	N = 178	
Upper Respiratory Tract Infection	11 (6.3)	6 (3.4)	
Headache	9 (5.1)	7 (3.9)	
Combination with Metformin + Rosiglitazone (18 weeks)	Sitagliptin 100 mg + Metformin + Rosiglitazone	Placebo + Metformin + Rosiglitazone	
	N = 181	N = 97	
Upper Respiratory Tract Infection	10 (5.5)	5 (5.2)	
Nasopharyngitis	11 (6.1)	4 (4.1)	
Combination with Glimepiride (+/- Metformin) (24 weeks)	Sitagliptin 100 mg + Glimepiride (+/-Metformin)	Placebo + Glimepiride (+/- Metformin)	
	N = 222	N = 219	
Nasopharyngitis	14 (6.3)	10 (4.6)	
Headache	13 (5.9)	5 (2.3)	
Intent-to-treat population			
In the 24-week study of patients receiving Sitagliptin as add-on comb		ons reported regardless of investigator assessment of	
causality in ≥5% of patients and more commonly than in patients giver			
In the 24-week study of patients receiving Sitagliptin as add-on the	erapy to insulin (with or without Metformin), there were no a	dverse reactions reported regardless of investigate	

assessment of causality) in ≥5% of patients are shown in Table 6.

Table 6. Initial Therapy with Combination of Sitagliptin and Metformin: Adverse Reactions Reported (Regardless of Investigator Assessment of Causality) in ≥ 5% of Patients Receiving Combination Therapy (and Greater than in Patients Receiving Metformin alone, Sitagliptin alone, and Placebo) mber of Patients (% Sitagliptin 100 mg QD Sitagliptin 50 mg bid + Metformin

Upper Respiratory Infection 19 (5.2 9 (5.1) 8 (4.5) Headache 5 (2.8) 2 (1.1) 14 (3.8) 22 (5.9)

Intent-to-treat population. Data pooled for the patients given the lower and higher doses of Metformin

If the 24-week study of patients and more commonly than in patients given placebo, except for hypoglycemia (see Table 7).

In the study of Sitagliptin as add-on combination therapy with Metformin and Rosiglitazone (Table 5), through Week 54 the adverse reactions reported regardless of investigator assessment of causality in 25% of patients treated with Sitagliptin and more commonly than in patients treated with placebo were: upper respiratory tract infection Sitagliptin, 15.5%; placebo, 6.2%), nasopharyngitis (11.0%, 9.3%), peripheral edema (8.3%, 5.2%), and headache (5.5%, 4.1%). In a pooled analysis of the two monotherapy studies, the add-on to Metformin study, and the add-on to Pioglitazone study, the incidence of selected gastrointestinal adverse reactions in patients treated with Sitagliptin was as follows: abdominal pain (Sitagliptin 100 mg, 2.3% placebo, 2.1%), nausea (1.4%, 0.6%), and diarrhea (3.0%, 2.3%). In an additional, 24-week, placebo-controlled factorial study of initial therapy with Sitagliptin in combination with Metformin, the adverse reactions reported (regardless of investigator

500 or 1000 mg bid 1 500 or 1000 mg bid

In a 24-week study of initial therapy with Sitagliptin in combination with Ploglitazone, there were no adverse reactions reported (regardless of investigator assessment of causality) in ≥5% of patients and more commonly than in patients given Ploglitazone alone.

No clinically meaningful changes in vital signs or in ECG (including in QTc interval) were observed in patients treated with Sitagliptin.

In a pooled analysis of 19 double-blind clinical trials that included data from 10,246 patients randomized to receive Sitagliptin 100 mg/day (N=5429) or corresponding (active or placebo) control (N=4817), the incidence of acute pancreatitis was 0.1 per 100 patient-years in each group (4 patients with an event in 4708 patient-years for Sitagliptin and 4 patients with an event in 4708 patient-years for Sitagliptin and 4 patients with an event in 4708 patient.

Hypoglycemia In the above studies (N=9) studies, adverse reactions of hypoglycemia were based on all reports of symptomatic hypoglycemia. A concurrent blood glucose measurement was not required although most (74%) reports of hypoglycemia were accompanied by a blood glucose measurement ≤70 mg/dL. When Sitagliptin was co-administered with a sulfonylurea or with insulin, the percentage of patients with at least one adverse reaction of hypoglycemia was higher than in the corresponding placebo group (Table 7).

Table 7: Incidence and Rate of Hypoglycemia in Placebo-Controlled Clinical Studies when Sitagliptin was used as Add-On Therapy to Glimepiride (with or without Metformin) or Insulin (with or without Metformin), Regardless of Investigator Assessment of Causality Add-On to Glimepiride (+/- Metformin) (24 weeks) Sitagliptin 100 mg + Glimepiride (+/- Metformin) Placebo + Glimepiride (+/- Metformin N = 222 N = 219 Overall (%) 27 (12.2) 4 (1.8) des/patient-year) 0.59 0.24 0 (0.0) Severe (%) Add-On to Insulin Sitagliptin 100 mg Placebo + Insulin (+/- Metfo + Insulin (+/- Metformin) N = 319 Overall (%) 50 (15.5) 25 (7.8) Rate (episodes/patient-year) Severe (%)5 2 (0.6) 1 (0.3)

Adverse reactions of hypoglycemia were based on all reports of symptomatic hypoglycemia; a concurrent glucose measurement was not required; intent-to-treat population.

Based on total number of events (i.e., a single patient may have had multiple events).

Severe events of hypoglycemia were defined as those events requiring medical assistance or exhibiting depressed level/loss of consciousness or seizure.

In a pooled analysis of the two monotherapy studies, the add-on to Metformin study, and the add-on to Pioglitazone study, the overall incidence of adverse reactions of hypoglycemia was 1.2% in patients treated with Sitagliptin 100 mg and 0.9% in patients treated with placebo. In the study of Sitagliptin as add-on combination therapy with Metformin and Rosiglitazone, the overall incidence of hypoglycemia was 2.2% in patients given add-on Sitagliptin and 0.0% in patients given add-on placebo through Week 18. Through Week 54, the overall incidence of hypoglycemia was 3.9% in patients given add-on Sitagliptin and 1.0% in patients given add-on placebo.

nypogiycemia was 3.9% in patients given add-on Sitagliptin and 1.0% in patients given add-on placebo.

In the 24-week, placebo-controlled factorial study of initial therapy with Sitagliptin in combination with Metformin, the incidence of hypoglycemia was 0.6% in patients given placebo, 0.6% in patients given Sitagliptin alone, 0.8% in patients given Metformin alone, and 1.6% in patients given Sitagliptin in combination with Metformin.

In the study of Sitagliptin as initial therapy with Pioglitazone, one patient taking Sitagliptin experienced a severe episode of hypoglycemia. There were no severe hypoglycemia episodes reported in other studies except in the study involving co-administration with insulin.

In an additional, 30-week placebo-controlled, study of patients with type 2 diabetes inadequately controlled with metformin comparing the maintenance of sitagliptin 100 mg versus withdrawal of sitagliptin when initiating basal insulin therapy, the event rate and incidence of documented symptomatic hypoglycemia (blood glucose measurement ≤70 mg/dL) did not differ between the sitagliptin and placebo groups.

Laboratory Tests
Across clinical studies, the incidence of laboratory adverse reactions was similar in patients treated with Sitagliptin 100 mg compared to patients treated with placebo. A small increase in white blood cell count (WBC) was observed due to an increase in neutrophils. This increase in WBC (of approximately 200 cells/microL vs placebo, in four pooled placebo-controlled clinical studies, with a mean baseline WBC count of approximately 6600 cells/microL) is not considered to be clinically relevant. In a 12-week study of 91 patients with chronic renal insufficiency, 37 patients with moderate renal insufficiency were randomized to Sitagliptin 50 mg daily, while 14 patients with the same magnitude of renal impairment were randomized to placebo. Mean (SE) increases in serum creatinine were observed in patients treated with Sitagliptin [0.12 mg/dL (0.04)] and in patients treated with placebo [0.07 mg/dL (0.07)]. The clinical significance of this added increase in serum creatinine relative to placebo is not known.

Postmarketing Experience Postmarketing Experience
Additional adverse reactions have been identified during postapproval use of Sitagliptin as monotherapy and/or in combination with other antihyperglycemic agents. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Hypersensitivity reactions including anaphylaxis, angloedema, rash, urticaria, cutaneous vasculitis, and exfoliative skin conditions including Stevens-Johnson syndrome; hepatic enzyme elevations; acute pancreatitis, including fatal and non-fatal hemorrhagic and necrotizing pancreatitis; worsening renal function, including acute renal failure (sometimes requiring dialysis), and tubulointerstitial nephritis; severe and disabling arthralgia; bullous pemphigoid; constipation, vomiting, headache; myalgia; pain in extremity; back pain; pruritus; mouth ulceration; stomatitis; rhabdomyolysis.

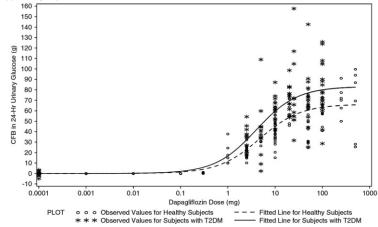
4.9. Overdose

Dapaqliflozin
There were no reports of overdose during the clinical development program for Dapaqliflozin. In the event of an overdose, contact the Poison Control Center. It is also reasonable to employ supportive measures, as dictated by the patient's clinical status. The removal of Dapaqliflozin by hemodialysis has not been studied.

Sitagliptin

Stadymun
In the event of an overdose, it is reasonable to employ the usual supportive measures, e.g., remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring (including obtaining an electrocardiogram), and institute supportive therapy as indicated by the patient's clinical status. Sitagliptin is modestly dialyzable. In clinical studies, approximately 13.5% of the dose was removed over a 3- to 4-hour hemodialysis session. Prolonged hemodialysis may be considered if clinically appropriate. It is not known if Sitagliptin is dialyzable by peritoneal dialysis.

5. PHARMACOLOGICAL PROPERTIES 5.1. Mechanism of Action


Dapagliflozin

Dapagilinitating Sodium-glucose cotransporter 2 (SGLT2), expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. Dapagliflozin is an inhibitor of SGLT2. By inhibiting SGLT2, dapagliflozin reduces reabsorption of filtered glucose and thereby promotes urinary glucose excretion. Dapagliflozin also reduces sodium reabsorption and increases the delivery of sodium to the distal tubule. This may influence several physiological functions including, but not restricted to, lowering both preand afterload of the heart and downregulation of sympathetic activity, and decreased intraglomerular pressure which is believed to be mediated by increased tubuloglomerular feedback

Sitagliptin is a DPP-4 inhibitor, which is believed to exert its actions in patients with type 2 diabetes by slowing the inactivation of incretin hormones. Concentrations of the active intact hormones are increased by Sitagliptin, thereby increasing and prolonging the action of these hormones. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are released by the intestine throughout the day, and levels are increased in response to a meal. These hormones are rapidly inactivated by the enzyme, DPP-4. The incretins are part of an endogenous system involved in the physiologic regulation of glucose homeostasis. When blood glucose concentrations are normal or elevated, GLP-1 and GIP increase insulin synthesis and release from pancreatic beta cells by intracellular signaling pathways involving cyclic AMP, GLP-1 also lowers glucagon secretion from pancreatic lapha cells, leading to reduced hepatic glucose production. By increasing and prolonging active incretin levels, Sitagliptin increases insulin release and decreases glucagon levels in the circulation in a glucose-dependent manner. Sitagliptin demonstrates selectivity for DPP-4 and does not inhibit DPP-8 or DPP-9 activity in vitro at concentrations annowing and the increase of the property of t approximating those from therapeutic doses.

5.2. Pharmacodynamic properties Pharmacodynamic Properties Dapagliflozin

General
Increases in the amount of glucose excreted in the urine were observed in healthy subjects and in patients with Type 2 Diabetes Mellitus following the administration of Dapagliflozin (see Figure 1). Dapagliflozin dose of 10 mg per day in patients with Type 2 Diabetes Mellitus for 12 weeks resulted in excretion of approximately 70 grams of glucose in the urine per day at Week 12. A near maximum glucose excretion was observed at the Dapagliflozin daily dose of 20 mg. This urinary glucose excretion with Dapagliflozin also results in increases in urinary volume. Figure 1: Scatter Plot and Fitted Line of Change from Baseline in 24-Hour Urinary Glucose Amount versus Dapagliflozin Dose in Healthy Subjects and Subjects with Type 2 Diabetes Mellitus (T2DM) (Semi-Log Plot)

Cardiac Electrophysiology
Dapagliflozin was not associated with clinically meaningful prolongation of QTc interval at daily doses up to 150 mg (15 times the recommended maximum dose) in a study of healthy subjects. In addition, no clinically meaningful effect on QTc interval was observed following single doses of up to 500 mg (50 times the recommended maximum dose) of Dapagliflozin in Sitagliptin

In patients with type 2 diabetes, administration of Sitagliptin led to inhibition of DPP-4 enzyme activity for a 24-hour period. After an oral glucose load or a meal, this DPP-4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active GLP-1 and GIP, decreased glucagon concentrations, and increased responsiveness of insulin release to glucose, resulting in higher C-peptide and insulin concentrations. The rise in insulin with the decrease in glucagon was associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal. In studies with healthy subjects, sitagliptin did not lower blood glucose or cause hypoglycemia. Sitagliptin and Metformin hydrochloride Co-administration

In a two-day study in healthy subjects, sliggliptin alone increased active GLP-1 concentrations, whereas Metformin alone increased active and total GLP-1 concentrations to similar extents. Coadministration of sitagliptin and Metformin had an additive effect on active GLP-1 concentrations. Sitagliptin, but not Metformin, increased active GIP concentrations. It is unclear what these findings mean for changes in glycemic control in patients with type 2 diabetes mellitus

Cardiac Electrophysiology
In a randomized, placebo-controlled crossover study, 79 healthy subjects were administered a single oral dose of sitagliptin 100 mg, sitagliptin 800 mg (8 times the recommended dose), and placebo. At the recommended dose of 100 mg, there was no effect on the QTc interval obtained at the peak plasma concentration, or at any other time during the study. Following the 800-mg dose, the maximum increase in the placebo-corrected mean change in QTc from baseline at 3 hours postdose was 8.0 msec. This increase is not considered to be clinically significant. At the 800-mg dose, peak sitagliptin plasma concentrations were approximately 11 times higher than the peak concentrations following a 100-mg dose. In patients with type 2 diabetes mellitus administered sitagliptin 100 mg (N=81) or sitagliptin 200 mg (N=63) daily, there were no meaningful changes in QTc interval based on ECG data obtained at the time of expected peak plasma concentration.

expected peak plasma concentration.

5.3. Pharmacokinetic properties

Dapagliflozin

Absorption

Following oral administration of Dapagliflozin, the maximum plasma concentration (C_{max}) is usually attained within 2 hours under fasting state. The C_{max} and AUC values increase dose proportionally with increase in Dapagliflozin dose in the therapeutic dose range. The absolute oral bioavailability of Dapagliflozin following the administration of a 10 mg dose is 78%. Administration of Dapagliflozin with a high-fat meal decreases its C_{max} by up to 50% and prolongs T_{max} by approximately 1 hour but does not alter AUC as compared with the fasted state. These changes are not considered to be clinically meaningful and Dapagliflozin can be administered with or without food. Distribution

Dapagliflozin is approximately 91% protein bound. Protein binding is not altered in patients with renal or hepatic impairment. Metabolism

The metabolism of Dapagifilozin is primarily mediated by UGT1A9; CYP-mediated metabolism is a minor clearance pathway in humans. Dapagliflozin is extensively metabolized, primarily to yield Dapagliflozin 3-0-glucuronide, which is an inactive metabolite. Dapagliflozin 3-0-glucuronide accounted for 61% of a 50 mg ["C]-Dapagliflozin dose and is the predominant drug-related component in human plasma.

Dapagliflozin and related metabolites are primarily eliminated via the renal pathway. Following a single 50 mg dose of ["C]-Dapagliflozin, 75% and 21% total radioactivity is excreted in urine and feces, respectively. In urine, less than 2% of the dose is excreted as parent drug. In feces, approximately 15% of the dose is excreted as parent drug. The mean plasma terminal half-life (t_) for Dapagliflozin is approximately 12.9 hours following a single oral dose of Dapagliflozin 10 mg.

Renal Impairment
At steady state (20 mg once-daily Dapagliflozin for 7 days), patients with Type 2 Diabetes with mild, moderate, or severe renal impairment (as determined by eGFR) had geometric mean systemic exposures of Dapagliflozin that were 45%, 2.04-fold, and 3.03-fold higher, respectively, as compared to patients with Type 2 Diabetes with normal renal function. Higher systemic exposure of Dapagliflozin in patients with Type 2 Diabetes Mellifus with renal impairment did not result in a correspondingly higher 24-hour urinary glucose excretion. The steady-state 24-hour urinary glucose excretion in patients with Type 2 Diabetes and mild, moderate, and severe renal impairment was 42%, 80%, and 90% lower, respectively, than patients with Type 2 Diabetes with normal renal function. The impact of hermodialysis on Dapagliflozin exposure is not known. Hanatic Impairment

repair inpairment in the stress of the stres Effects of Age, Gender, Race, and Body Weight on Pharmacokinetics

Based on a population pharmacokinetic analysis, age, gender, race, and body weight do not have a clinically meaningful effect on the pharmacokinetics of Dapagliflozin and thus, no dose adjustment is recommended

Pediatric Pharmacokinetics in the pediatric population has not been studied

Drug Interactions
In Vitro Assessment of Drug Interactions

In in vitro studies, Dapagliflozin and Dapagliflozin 3-O-glucuronide neither inhibited CYP 1A2, 2C9, 2C19, 2D6, or 3A4, nor induced CYP 1A2, 2B6, or 3A4. Dapagliflozin is a weak substrate of the P-glycoprotein (P-gp) active transporter, and Dapagliflozin 3-O-glucuronide is a substrate for the OAT3 active transporter. Dapagliflozin or Dapagliflozin 3-O-glucuronide did not meaningfully inhibit P-gp, OCT2, OAT1, or OAT3 active transporters. Overall, Dapagliflozin is unlikely to affect the pharmacokinetics of concurrently administered medications that are P-gp, OCT2, OAT1, or OAT3 substrates. Effects of Other Drugs on Dapagliflozin
Table 8 shows the effect of coadministered drugs on the pharmacokinetics of Dapagliflozin. No dose adjustments are recommended for Dapagliflozin.

Table 8: Effects of Coadministered Drugs on Dapagliflozin Systemic Exposure

Coadministered Drug (Dose Regimen) *	Dapagliflozin (Dose Regimen)	Effect on Dapagliflozin Exposure (% Change [90%Cl])		
		C max	AUC [†]	
No dosing adjustmen	nts required for the following:	_		
Oral Ant	idiabetic Agents			
Metformin Hydrochloride (1000 mg)	20 mg	\leftrightarrow	\leftrightarrow	
Pioglitazone (45 mg)	50 mg	\leftrightarrow	\leftrightarrow	
Sitagliptin (100 mg)	20 mg	\leftrightarrow	\leftrightarrow	
Glimepiride (4 mg)	20 mg	\leftrightarrow	\leftrightarrow	
Voglibose (0.2 mg three times daily)	10 mg	\leftrightarrow	\leftrightarrow	
Other	Medications		•	
Hydrochlorothiazide (25 mg)	50 mg	\leftrightarrow	\leftrightarrow	
Bumetanide (1 mg)	10 mg once daily for 7 days	\leftrightarrow	\leftrightarrow	
/alsartan (320 mg)	20 mg	↓12% [↓3%, ↓20%]	\leftrightarrow	
Simvastatin (40 mg)	20 mg	\leftrightarrow	\leftrightarrow	
Anti-iı	nfective Agent	1	•	
Rifampin (600 mg once daily for 6 days)	10 mg	↓7% [↓22%, ↑11%]	[↓27%, 17%] ^{↓22%}	
Nonsteroidal A	nti-inflammatory Agent			
Mefenamic Acid (loading dose of 500 mg followed by 14 doses of 250 mg every 6 hours)	10 mg	↑13% [↑3%, ↑24%]	↑51% [↑44%, 58%]	

Shigher dose unless otherwise roles.

AUC = AUC (INF) for drugs given as single dose and AUC = AUC (TAU) for drugs given in multiple doses.

→ = no change (geometric mean ratio of test: reference within 0.80 to 1.25); ↓ or ↑ = parameter was lower or higher, respectively, with coadministration compared to Dapagliflozin administered alone (geometric mean ratio of test: reference was lower than 0.80 or higher than 1.25).

Effects of Dapagliflozin on Other Drugs
Table 9 shows the effect of Dapagliflozin on other co-administered drugs. Dapagliflozin did not meaningfully affect the pharmacokinetics of the co-administered drugs.

Co-administered Drug (Dose Regimen)	Dapagliflozin (Dose Regimen)	Effects on Co-administered Drug Exposure (% Change [90% CI])		
		C max	AUC [†]	
No dosing adjustments required for the following:	<u> </u>			
	Oral Antidiabetic Agents			
Metformin Hydrochloride (1000 mg)	20 mg	\leftrightarrow	\leftrightarrow	
Pioglitazone (45 mg)	50 mg	↓7% [↓25%, ↑15%]	\leftrightarrow	
Sitagliptin (100 mg)	20 mg	\leftrightarrow	\leftrightarrow	
Glimepiride (4 mg)	20 mg	\leftrightarrow	↑13% [0%, ↑29%]	
Other Medications	'			
Hydrochlorothiazide (25 mg)	50 mg	\leftrightarrow	\leftrightarrow	
Bumetanide (1 mg)	10mg once daily for 7 days	↑13% [↓2%, ↑31%]	↑13% [↓1%, ↑30%]	
Valsartan (320 mg)	20 mg	↓6% [↓24%, ↑16%]	↑5% [↓15%, ↑29%]	
Simvastatin (40 mg)	20 mg	\leftrightarrow	↑19%	
Digoxin (0.25 mg)	20 mg loading dose then 10 mg once daily for 7 days	\leftrightarrow	\leftrightarrow	
Warfarin (25 mg)	20 mg loading dose then 10 mg once daily for 7 days	\leftrightarrow	\leftrightarrow	

bound to plasma proteins is low (38%)

Talligie dose unless or unlevise noted.

AUC – AUC (INF) for drugs given as single dose and AUC = AUC (TAU) for drugs given in multiple doses.

→ = no change (geometric mean ratio of test: reference within 0.80 to 1.25); ↓ or ↑ = parameter was lower or higher, respectively, with coadministration compared to Dapagliflozin administered alone (geometric mean ratio of test: reference was lower than 0.80 or higher than 1.25). Sitagliptin The pharmacokinetics of sitagliptin have been extensively characterized in healthy subjects and patients with type 2 diabetes mellitus. Following a single oral 100-mg dose to healthy volunteers, mean plasma AUC of sitagliptin was 8.52 Mhr, C_m was 950 nM, and apparent terminal half-life (t₁₀) was 12.4 hours. Plasma AUC of sitagliptin increased in a dose-proportional manner and increased approximately 14% following 100 mg doses at steady-state compared to the first or. The intra-subject and inter-subject coefficients of variation for sitagliptin AUC were small (5.8% and 15.1%). The pharmacokinetics of sitagliptin was generally similar in healthy subjects and in patients with type 2 diabetes mellitus.

Absorption
After oral administration of a 100 mg dose to healthy subjects, sitagliptin was rapidly absorbed with peak plasma concentrations (median T_{nm}) occurring 1 to 4 hours postdose. The absolute bioavailability of sitagliptin is approximately 87%.

inistration of a high-fat meal with sitagliptin had no effect on the pharmacokinetics of sitagliptin. Distribution The mean volume of distribution at steady state following a single 100 mg intravenous dose of Sitagliptin to healthy subjects is approximately 198 liters. The fraction of Sitagliptin reversibly Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. The apparent terminal t1/2 following a 100 mg oral dose of sitagliptin was approximately 12.4 hours and renal clearance was approximately 350 mL/min.

contribution from CYP2C8. Following administration of an oral 1°CI Sitaglightin dose to healthy subjects, approximately 100% of the administered radioactivity was eliminated in feces (13%) or urine (87%) within one

Following domining domining and the control of the

Following a ["C] Sitagliptin oral dose, approximately 16% of the radioactivity was excreted as metabolities of Sitagliptin. Six metabolities were detected at trace levels and are not expected to contribute to the plasma DPP-4 inhibitory activity of Sitagliptin. In vitro studies indicated that the primary enzyme responsible for the limited metabolism of Sitagliptin was CYP3A4, with

Patients with Renal Impairment
An approximately 2-fold increase in the plasma AUC of sitagliptin was observed in patients with moderate renal impairment with eGFR of 30 to less than 45 mL/min/1.73 m², and an approximately 4-fold increase was observed in patients with severe renal impairment, including patients with ESRD on hemodialysis, as compared to normal healthy control subjects.

Patients with Hepatic Impairment (Child-Pugh score 7 to 9), mean AUC and C_{max} of sitagliptin increased approximately 21% and 13%, respectively, compared to healthy matched controls following administration of a single 100-mg dose of sitagliptin. These differences are not considered to be clinically meaningful. There is no clinical experience in patients with severe hepatic impairment (Child-Pugh score >9). Effects of Age, Body Mass Index (BMI), Gender, and Race

Based on a population pharmacokinetic analysis or a composite analysis of available pharmacokinetic data, BMI, gender, and race do not have a clinically meaningful effect on the pharmacokinetic of sitagliptin. When the effects of age on renal function are taken into account, age alone did not have a clinically meaningful impact on the pharmacokinetics of sitagliptin based on a population pharmacokinetic analysis. Elderly subjects (65 to 80 years) had approximately 19% higher plasma concentrations of sitagliptin compared to younger subjects. **Drug Interaction Studies** In Vitro Assessment of Drug Interactions
Sitagliptin is not an inhibitor of CYP isozymes CYP3A4, 2C8, 2C9, 2D6, 1A2, 2C19 or 2B6, and is not an inducer of CYP3A4. Sitagliptin is a P-gp substrate but does not inhibit P-gp

mediated transport of digoxin. Based on these results, sitagliptin is considered unlikely to cause interactions with other drugs that utilize these pathways. Sitagliptin is not extensively bound to plasma proteins. Therefore, the propensity of sitagliptin to be involved in clinically meaningful drug-drug interactions mediated by plasma protein binding displacement is very low. In Vivo Assessment of Drug Interactions

Effect of Sitagliptin on Other Drugs

In Contract of Sitagliptin on Other Drugs

In Clinical studies, sitagliptin in did not meaningfully alter the pharmacokinetics of Metformin, glyburide, simvastatin, rosiglitazone, digoxin, warfarin, or an oral contraception (ethinyl estradiol and norethindrone), providing in vivo evidence of a low propensity for causing drug interactions with substrates of CYP3A4, CYP2C8, CYP2C9, P-gp, and organic cationic transporter (OCT).

Coadministered Drug	Dose of Coadministered Drug	Dose of Sitagliptin	Geometric Mean Ratio (ratio with/without sitagliptin) No Effect = 1.00		
				AUC†	C _{max}
Digoxin	0.25 mg [‡] once daily for 10 days	100 mg [‡] once daily for 10 days	Digoxin	1.11 [§]	1.18
Glyburide	1.25 mg	200 mg [‡] once daily for 6 days	Glyburide	1.09	1.01
Simvastatin	20 mg	200 mg [‡] once daily for 5 days	Simvastatin	0.851	0.80
			Simvastatin Acid	1.12 ¹	1.06
Rosiglitazone	4 mg	200 mg [‡] once daily for 5 days	Rosiglitazone	0.98	0.99
Warfarin	30 mg single dose on day 5	200 mg [‡] once daily for 11 days	S (-) Warfarin	0.95	0.89
			R (+) Warfarin	0.99	0.89
Ethinyl estradiol and norethindrone	21 days once daily of 35 µg ethinyl estradiol with norethindrone 0.5 mg x 7 days, 0.75 mg x 7 days, 1.0 mg x 7 days	200 mg [‡] once daily for 21 days	Ethinyl estradiol	0.99	0.97
			Norethindrone	1.03	0.98
Metformin HCI	1000 mg [‡] twice daily for 14 days	50 mg [‡] twice daily for 7 days	Metformin	1.02*	0.97

All doses administered as single dose unless otherwise specified. AUC is reported as AUC0-∞ unless otherwise specified.

* Multiple dose. *AUC_{0-24hr}. *AUC_{0-last}.

Effects of Other Drugs on Sitagliptin

Clinical data described below suggest that sitagliptin is not susceptible to clinically meaningful interactions by co-administered medications (Table 11).

Co-administered Drug	Dose of Co-administered Drug*	Dose of Sitagliptin*	Geometric Mean Ratio (Ratio with/ without Co-administered drug) No Effect = 1.00		
				AUC [†]	C _{max}
Cyclosporine	600 mg once daily	100 mg once daily	Sitagliptin	1.29	1.68
Metformin HCI	1000 mg [‡] twice daily for 14 days	50 mg [‡] twice daily for 7 days	Sitagliptin	1.02 [§]	1.05

All doses administered as single dose unless otherwise specified. AUC is reported as $AUC_{\circ, \perp}$ unless otherwise specified. Multiple doses. $AUC_{\circ, 12n}$.

6. NONCLINICAL PROPERTIES 6.1. Animal Toxicology or Pharmacology

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis, Mutagenesis, Impairment of Fertility

Dapagliflozin did not induce tumors in either mice or rats at any of the doses evaluated in 2-year carcinogenicity studies. Oral doses in mice consisted of 5, 15, and 40 mg/kg/day in males and 2, 10, and 20 mg/kg/day in females, and oral doses in rats were 0.5, 2, and 10 mg/kg/day for both males and females. The highest doses evaluated in mice were approximately 72 times (males) and 105 times (females) the clinical dose of 10 mg per day based on AUC exposure. In rats, the highest dose was approximately 131 times (males) and 186 times (females) the clinical dose of 10 mg per day based on AUC exposure. times (males) and 105 times (temales) the clinical cose of 10 mg per day based on AUC exposure. In rais, the nignest cose was approximately 131 times (males) and 165 times (temales) the clinical dose of 10 mg per day based on AUC exposure.

Dapagliflozin was negative in the Ames mutagenicity assay and was positive in a series of *in vitro* clastogenicity assays in the presence of S9 activation and at concentrations ≥100 µg/mL. Dapagliflozin was negative for clastogenicity in a series of *in vitro* studies evaluating micronuclei or DNA repair in rats at exposure multiples >2100 times the clinical dose.

There was no carcinogenicity or mutagenicity signal in animal studies, suggesting that dapagliflozin does not represent a genotoxic risk to humans.

Dapagliflozin had no effects on mating, fertility, or early embryonic development in treated male or female rats at exposure multiples ≤1708 times and 998 times the maximum recommended human dose in males and females, respectively.

Atwo-year carcinogenicity study was conducted in male and female rats given oral doses of Sitagliptin of 50, 150, and 500 mg/kg/day. There was an increased incidence of combined liver Atwo-year carcinogenicity study was conducted in male and female rats given oral doses of Sitagliptin of 50, 150, and 500 mg/kg/day. There was an increased incidence of combined liver adenoma/carcinoman in males and females at 500 mg/kg. This dose approximately 60 times the human exposure at the maximum recommended daily adult human dose (MRHD) of 100 mg/day based on AUC comparisons. Liver tumors were not observed at 150 mg/kg, approximately 20 times the human exposure at the MRHD. A two-year carcinogenicity study was conducted in male and female mice given oral doses of Sitagliptin of 50, 125, 250, and 500 mg/kg/day. There was no increase in the incidence of tumors in any organ up to 500 mg/kg, approximately 70 times human exposure at the MRHD. Sitagliptin was not mutagenic or clastogenic with or without metabolic activation in the Ames bacterial mutagenicity assay, a Chinese hamster ovary (CHO) chromosome aberration assay, an in vitro cytogenetics assay in CHO, an *in vitro* rat hepatocyte DNA alkaline elution assay, and an in vivo micronucleus assay.

In rat fertility studies with oral gavage doses of 125, 250, and 1000 mg/kg, males were treated for 4 weeks prior to mating, during mating, up to scheduled termination (approximately 8 weeks total) and females were treated 2 weeks prior to mating through gestation day 7. No adverse effect on fertility was observed at 125 mg/kg (approximately 12 times human exposure at the MRHD of 100 mg/day based on AUC comparisons). At higher doses, nondose-related increased resorptions in females were observed (approximately 25 and 100 times human exposure at the MRHD based on AUC comparisons).

Sitagliptin

7. DESCRIPTION Dapagilflozin is described chemically as D-glucitol, 1,5-anhydro-1-C-[4-chloro-3-[(4ethoxyphenyl)methyl]phenyl]-, (1S)-, compounded with (2S)-1,2-propanediol, hydrate (1:1:1). The empirical formula is C₂₁H₂C₁O₂C₃H₃O₂H₂O and the molecular weight is 502.98. The structural formula is:

Sladgliptin phosphate monohydrate is described chemically as I-[(3K)-3-amino-1-0x0-4-(2,4,0-0) phosphate (1:1) monohydrate.

The empirical formula is C₁₆H₁₅F₈N₂OH₃PO₄H₃O and the molecular weight is 523.32. The structural formula is: sphate monohydrate is described chemically as 7-[(3R)-3-amino-1-oxo-4-(2,4,5-trifluorophenyl)butyl]-5,6,7,8-tetrahydro-3-(trifluoromethyl)-1,2,4-triazolo[4,3-a]pyrazine

PHARMACEUTICAL PARTICULARS 8.1. Incompatibilities Not applicable.

8.2 Shelf-life se see manufacturing date/expiry date printed on pack

8.3. Packaging information Alu-Alu Blister of 10 Tablets

9. PATIENT COUNSELLING INFORMATION

What is Dapagliflozin and Sitagliptin Phosphate Tablet?

It is a prescription medicine used along with diet and exercise to improve blood sugar (glucose) control in adults with type 2 diabetes.

It is not for people with type 1 diabetes.
It is not known if Dapagliflozin and Sitagliptin Phosphate Tablet is safe and effective in children younger than 18 years of age.

Who should not take Dapagliflozin and Sitagliptin Phosphate Tablet?

Do not take this medicine if you are allergic to Dapagliflozin, Sitagliptin or any of the ingredients in the Dapagliflozin and Sitagliptin Phosphate Tablet.

Symptoms of a serious allergic reaction to Dapagliflozin and Sitagliptin Phosphate Tablet and throat that may cause difficulty in breathing or swallowing

What should I tell my doctor before using Dapagliflozin and Sitagliptin Phosphate Tablet?

Before you take Dapagliflozin and Sitagliptin Phosphate Tablet, tell your doctor about all of your medical conditions, including if you:

have type 1 diabetes or have had diabetic ketoacidosis.

have liver problems.

have a history of urinary tract infections or problems urinating. have or have had inflammation of your pancreas (pancreatitis).

have kidney problems

Trave kninely productions.

The production of plan to become pregnant. Dapagliflozin and Sitagliptin Phosphate Tablet may harm your unborn baby. If you become pregnant while taking Dapagliflozin and Sitagliptin Phosphate Tablet, your healthcare provider may switch you to a different medicine to control your blood sugar. Talk to your healthcare provider about the best way to control your blood sugar if you plan to become pregnant or while you are pregnant.

are breastfeeding or plan to breastfeed. It is not known if Dapagliflozin and Sitagliptin Phosphate Tablet passes into your breast milk. You should not breastfeed if you take Dapagliflozin and Sitagliptin Phosphate Tablet. Tell your doctor about all the medicines you take including:

any prescription medicines, including blood pressure medicines any non-prescription medicines, including vitamins and herbal supplements. Know the medicines you take. Keep a list of them to show your healthcare provider and pharmacist when you get a new medicine.

How should I take Dapagliflozin and Sitagliptin Phosphate Tablet?

Take Dapagliflozin and Sitagliptin Phosphate Tablet exactly as your healthcare provider tells you to take it

Stay on your prescribed diet and exercise program while taking Dapaqliflozin and Sitagliptin Phosphate Tablet.

Stay on your presstructive duration selectives program white taking Dapaghillozin and Stadghill rhosphate Tablet.

Your healthcare provider may do certain blood tests before you start Dapaghillozin and Sitagliptin Phosphate Tablet and during your treatment.

If you miss a dose, take it as soon as you remember. If it is almost time for your next dose, skip the missed dose and take the medicine at the next regularly scheduled time. Do not take 2 doses of Dapagilifozin and Sitagliptin Phosphate Tablet at the same time.

When your body is under some types of stress, such as fever, trauma (such as a car accident), infection, or surgery, the amount of diabetes medicine you need may change. Tell your healthcare provider right away if you have any of these conditions and follow your healthcare provider's instructions.

Your healthcare provider will check your diabetes with regular blood tests, including your blood sugar levels and your HbA1c.

Follow your healthcare provider's instructions for treating low blood sugar (hypoglycemia). Talk to your healthcare provider if low blood sugar is a problem for you.

What are the possible side effects of Dapagliflozin and Sitagliptin Phosphate Tablet? Possible side effects of Dapagliflozin and Sitagliptin Phosphate Tablet may include: Kidney problems, sometimes requiring dialysis.

Low blood sugar (hypoglycemia) in patients with diabetes mellitus. If you take Dapagliflozin and Sitagliptin Phosphate Tablet with another medicine that can cause low blood sugar, such as a sulfonylurea or insulin, your risk of getting low blood sugar is higher. The dose of your sulfonylurea medicine or insulin may need to be lowered while you take Dapagliflozin and Sitagliptin Phosphate Tablet. Signs and symptoms of low blood sugar may include: headache, weakness, confusion, shaking or feeling jittery, drowsiness, dizziness, irritability, sweating, hunger & fast heartbeat.

Ketoacidosis in people with diabetes mellitus (increased ketones in your blood or urine). Ketoacidosis has happened in people who have type 1 diabetes or type 2 diabetes, during treatment with Dapagliflozin and Sitagliptin Phosphate Tablet. Ketoacidosis has also happened in people with diabetes who were sick or who had surgery during treatment with Dapagliflozin and Sitagliptin Phosphate Tablet. Ketoacidosis is a serious condition, which may need to be treated in a hospital. Ketoacidosis may lead to death. Ketoacidosis can happen with Dapagliflozin and Sitagliptin Phosphate Tablet even if your blood sugar is less than 250 mg/dL. Stop taking Dapagliflozin and Sitagliptin Phosphate Tablet and call your healthcare provider right away if you get any of the following symptoms:

Tell your healthcare provider if you have any signs or symptoms of a urinary tract infection such as a burning feeling when passing urine, a need to urinate often, the need to urinate right away, pain in the lower part of your stomach (pelvis), or blood in the urine. Sometimes people also may have a fever, back pain, nausea or vomiting. Serious allergic reactions. If you have any symptoms of a serious allergic reaction, stop taking Dapagliflozin and Sitagliptin Phosphate and call your doctor right away or get emergency medical help. Your doctor may give you a medicine for your allergic reaction and prescribe a different medicine for your diabetes

Serious urinary tract infections. Serious urinary tract infections that may lead to hospitalization have happened in people who are taking Dapagliflozin and Sitagliptin Phosphate Tablet.

Joint pain. Some people who take Dapagliffozin and Sitagliptin Phosphate Tablet, may develop joint pain that can be severe. Call your doctor if you have severe joint pain Skin reaction. Some people who take Dapagliflozin and Sitagliptin Phosphate Tablet may develop a skin reaction called bullous pemphigoid that can require treatment in a hospital. Tell your doctor right away if you develop blisters or the breakdown of the outer layer of your skin (erosion). Your doctor may tell you to stop taking Dapagliflozin and Sitagliptin Phosphate Tablet.

 $The \, most \, common \, side \, effects \, of \, Dapagliflozin \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, include \, and \, Sitagliptin \, Phosphate \, Tablet \, and \, Sitagliptin \, Phosphate \, Tablet \, and \, Sitagliptin \, Phosphate \, Sitagliptin \,$ vaginal yeast infections and yeast infections of the penis

stuffy or runny nose and sore throat changes in urination, including urgent need to urinate more often, in larger amounts, or at night stomach upset and diarrhea swelling of the hands or legs

10. Details of manufacturer

trouble breathing stomach area (abdominal) pain

tiredness vomiting

Manufactured by: Windlas Biotech Limited (Plant-3), (WHO-GMP Certified Company) Plot No. 39, Pharmacity, Selaqui, Dehradun-248197, Uttarakhand

11. Details of permission or licence number with date Mfg. Lic. No.: 30/UA/2020 Dated: 05/01/2024

12. Date of revision

Marketed by: **PLEXCURÉ**

PLEXCURE HEALTHCARE PVT. LTD. 315, Golden Square, Nr. Nikol Fire Station, Nikol, Ahmedabad-382350, Gujarat, India. www.plexcure.com

TM-Trademark Under Registration